< 新闻 Release

Supporting high-capacity, high-speed communication between data centers in the 6G era

2023年11月30日

KDDI Corporation (总部设在千代田区, Tokyo; President 和 CEO: Makoto Takahashi, 以下, “KDDI”), KDDI研究有限公司. 总部位于藤野市, Saitama; President: Hajime Nakamura, 以下, “KDDI研究”), 住友电气工业公司有限公司. (总部设在大阪市, Osaka; President: Osamu Inoue, 以下简称“住友电工”), 古川电机株式会社.有限公司. (总部设在千代田区, Tokyo; President: Hideya Moridaira, 以下简称“古川电机”), 及化验室, LLC (headquartered in United States; 以下 “OFS”) have conducted successful experiments on ultrawideb和 optical fiber transmission with a transmission b和width of 115.2太赫兹 (approximately 24 times wider than conventional C-b和), the world’s largest (transmission capacity: 484 Tbps, 传输距离:31公里)(注1)在光纤传输实验中采用标准光纤直径. 这是通过将12个独立芯的非耦合12芯光纤紧密排列在250 μm的涂层中来实现的(注2)。, the same size as a st和ard optical fiber, 和 a broadb和 O-b和 optical fiber amplifier (BDFA).

在6G时代, 由于物联网(IoT)设备和移动服务的普及,预计将有比现在更多、更多样化的数据通过网络流动, 和 it is essential to further exp和 the capacity of optical fiber communication to support networks. The success this time is in technology for supporting high-capacity, high-speed communication between data centers in the 6G era. 此外, 由于每根光纤的传输容量可以大大扩展,因此可以用更少的光纤芯来保证相同的传输容量, 这项技术有望使普通管道和设施的使用占用更少的空间.

无花果. 1:这次是结果. 这些结果在ECOC 2023(欧洲光通信会议)上作为截止日期后的论文(注3)进行了报告。, one of the largest international academic conferences on optical communications technology, 于10月1日至5日举行, 2023.

背景: The capacity of optical fiber communication needs to be further exp和ed to support networks in the 6G era. 采用波分复用技术一般可以提高每根光纤的传输容量, in which the wavelength of light is slightly changed for multiplexed transmission. 直到现在, KDDI研究, 住友电气, 和 古电 have been working toward practical application of multi-core optical fibers, which have multiple cores in a single optical fiber (注4). 2023年3月, KDDI研究, 古电, 和 OFS conducted successful O-b和 coherent dense wavelength division multiplexing (DWDM) transmission (注5) 利用o波段的实验, which has approximately twice the transmission b和width of the C- 和 L-b和s (注6). 此外, 2023年3月, 住友电气提出了一种高密度非耦合12芯光纤,涂层直径为250 μm, the same diameter of st和ard optical fibers, making it ideal for creating high-density optical cables (注7).

时间结果: KDDI, KDDI研究, 住友电气, 古电, 和 OFS have succeeded in experiments in high-capacity transmission with a transmission b和width of 115.采用涂层直径为250 μm的高密度不耦合12芯光纤,结合o波段相干DWDM传输技术,实现了2thz的传输, which significantly reduces the effects of inter-core crosstalk. Please refer to the appendix for details.

(附录) 个别公司的角色

  • KDDI和KDDI研究
发展双向o波段相干DWDM传输技术,实现大容量传输

无花果. 2: Image of bi-directional O-b和 coherent DWDM transmission system
  • 古川电气和OFS
o波段掺铋光纤放大器的研制,可有效补偿单单元宽带宽范围内的光纤损耗

无花果. 3: Composition of O-b和 Bismuth-doped optical fiber amplifier (BDFA).
WDM: Wavelength Division Multiplexer, PDM: Polarization Division Multiplexing
  • 住友电气
开发高密度非耦合12芯光纤,显著提高每根光纤的传输容量

无花果. 4: 12芯光纤(右),与传统光纤(左)相同的标准涂层外径为250 μm, 12芯光纤密集排列。

o波段的优势在于它可以减少信号处理负荷来补偿波长色散 (注8) because the effect of wavelength dispersion is smaller than that of the C-b和, 但它的缺点是由于非线性光学效应,光信号的质量容易下降 (注9). 因此, the O-b和 has been considered unsuitable for increasing the capacity of optical fiber communication systems. KDDI研究开发了o波段相干DWDM传输技术,通过优化光信号的传输功率,抑制非线性光效应,实现大容量传输. 对多光信号进行波分复用是提高光纤通信容量的有效方法, but this requires 光纤放大器 that can amplify a broader wavelength b和. The BDFA developed by 古川电气和OFS can amplify optical signals over the entire O-b和, which is broader than the C-b和 和 L-b和 combined. 实验表明,将相干DWDM信号放大到9以上,可以获得与C+L波段相当的超宽带.6太赫兹在o波段. 此外, by applying multi-core optical fiber, in which multiple cores that are paths for optical signals are arranged in a single optical fiber, the transmission capacity per optical fiber can be exp和ed by the number of cores. 住友电气关注的事实是,o波段的光信号比c波段的光信号更受核心的限制, 在标准光纤外径250 μm范围内,开发出12个独立芯密集聚集的非耦合12芯光纤. 事实证明, by combining these three technologies, the total available b和width per optical fiber can be extended to 115.2太赫兹, 和 a 484 Tbps high-capacity transmission experiment was successfully conducted as one example. 这是世界上单波段最大的带宽和传输容量的演示实验, not a combination of multiple wavelength b和s.

未来展望: 在未来, research 和 development will continue for transceivers, 光纤放大器, 以及数字信号处理算法在超宽带o波段相干DWDM传输系统中的实际应用, with an aim of further increasing transmission capacity between data centers. 这项研究和开发的一部分是由新能源和工业技术发展组织(NEDO)委托的JPNP20017项目的成果。, a national research 和 development agency.

(注1)
Surveyed by KDDI研究 on October 20, 2023

(注2)
Multi-core optical fiber with st和ard coating diameter that can use existing optical cables.

(注3)
Post-deadline paper: A paper accepted after the general paper submission deadline (post-deadline). Paper selection is conducted during the conference period, 和 only highly rated research results are given the opportunity to be reported.

(注4)
新闻稿 on March 28, 2022 (in Japanese only)
以多芯光纤增加海底光缆容量的世界领先技术的开发和示范.

(注5)
相干密集波分复用(DWDM)传输:相干传输是一种利用光的波特性和光强特性传输比传统强度调制直接探测技术更大的数据量的方法. 密集波分复用(DWDM)是波分复用技术中波长密集复用的一种方法, which increases the transmission density of optical fibers.

(注6)
新闻稿 2023年5月18日
利用超宽带增加光纤通信容量:世界上第一个成功的o波段相干高密度波分复用传输实验.

(注7)
T. 哈亚希,. 井上,Y. 铃木,Y. Norisugi K. 川,我. Takano T. 长岛,T. Hirama K. 武田,Y. 下田和F. 佐藤:“Ultra-High-Density Microduct Cable with Uncoupled 12-Core Fibers with St和ard 250-µm Coating,” in 光纤 Communication Conference (OFC) 2023, Technical Digest Series (Optica Publishing Group, 2023), 纸Tu2C.2.

(注8)
Wavelength dispersion: A phenomenon in which light propagates at different speeds at different wavelengths. Since optical signals contain slightly different wavelength components, the longer the propagation distance, the more the optical signal distorts due to wavelength dispersion.

(注9) 非线性光效应:光信号干扰自身光信号的一个分量或另一个光信号复用到不同波长的分量的现象, causing distortion of the optical signal.

调查:
KDDI研究有限公司. 公共关系组

住友电气工业公司有限公司.

古川电机株式会社.有限公司. 公关部

知识库

Our scientists 和 engineers create the products 和 solutions that become industry st和ards. We publish their results 和 most important publications on our website.知识库电子书

 

他们讨论了各种各样的话题,从我们对技术问题的建议解决方案到众多产品的突破.

 

浏览我们的知识库